192. 9-(2'-Deoxy-β-D-xylofuranosyl)adenine Building Blocks for Solid-Phase Synthesis and Properties of Oligo(2'-deoxy-xylonucleotides)

by Helmut Rosemeyer, Marcela Krečmerova, and Frank Seela*

Laboratorium für Organische und Bioorganische Chemie, Universität Osnabrück, Fachbereich Biologie/Chemie, Barbarastr. 7, D-4500 Osnabrück

(15.X.91)

The $9-(2'-deoxy-\beta-D-threo-pentofuranosyl)adenine (= 9-(2'-deoxy-\beta-D-xylofuranosyl)adenine, xA_d; 2) was$ protected at its 6-NH2 group with either a benzoyl(5a) or a **(dimethy1amino)methylidene** (6a) residue and with a dimethoxytrityl group at 5'-OH **(5b, 6b).** Compounds **5b** and **6b** were then converted into the 3'-phosphonates 5c and *6c;* moreover, the 2-cyanoethyl phosphoramidite 6d was synthesized starting from **6b.** The DNA building blocks were used for solid-phase synthesis of d[(xA)₁₂-A] **(8)**. The latter was hybridized with d[(xT)₁₂-T] ($T_m = 35^{\circ}$); in contrast, with $d(T_{12})$, complex formation was not observed. Moreover, xA_d and xT_d were introduced into the self-complementary dodecamer **d(G-T-A-G-A-A-T-T-C-T-A-C) (12)** at different positions to give the oligomers **15-16.** All oligonucleotides were characterized by temperature-dependent CD and UV spectroscopy, and in addition, **14** by T-jump experiments. From concentration-dependent T_m measurements, the thermodynamic parameters of the melting as well as the tendency of hairpin formation of the oligonucleotides were deduced. Oligomer **14** was hydrolyzed by snake-venom phosphodiesterase in a discontinuous way implying a fast hydrolysis of unmodified 3'- and 5'-flanks followed by a slow hydrolysis of the remaining modified tetramer. In contrast to this, oligonucleotide **16** was hydrolyzed in a continuous reaction. In both cases, calf-spleen phosphodiesterase hydrolyzed the oligomer only marginally.

Introduction. - Except for the anomeric center, DNA contains two chiral C-atoms $((3'SA'R)$, see A) in the sugar-phosphate backbone $P-O(5')-C(5')-C(4')-C(3')-O(3')$ so that four DNA molecules with different configurations are conceivable $((3'S, 4'R), A;$ (3'R,4'R), **B;** (3'S,4'S), **C;** (3'R,4'S), **D).** One of themis naturally occurring DNA (see A); two others were already synthesized: *i)* Change of the *C(4)* configuration of regular DNA led to oligo(2'-deoxy-α-L-threo-pentofuranosylnucleotides) ((3'S,4'S), see C) which show interesting structural and biological properties [1] [2]. *ii*) We synthesized oligo(β -D-xylothymidine) ($(3'R,4'R)$, see **B**), representing a DNA fragment with a $3'$, $4'$ -D-threo-configuration within the sugar-phosphate backbone (see [3] and ref. cit. therein). This oligonucleotide exhibits reversed *Cotton* effects in the CD spectrum compared to oligo(dT) [3] and could be hybridized with oligo(dA) to form a double strand

 $(d(A_{12}) \cdot d[(xT)_{12}-T]: T_m 37^\circ; d(A_{12}) \cdot d(T_{12}): T_m 43^\circ)$. Moreover, we were able to synthesize a 'mixed' oligo(2'-deoxynucleotide) by replacement of dT residues within the self-complementary dodecamer d(G-T-A-G-A-A-T-T-C-T-A-C) by β -D-xylothymidine (xT_d; 4). The resulting DNA fragment **15** (see below) shows an unexpected secondary structure as well as reduced hydrolysis rates towards exonucleases **[3].**

In the following, we report on the synthesis of DNA building blocks of 2'-deoxy- β -Dxyloadenosine $(xA_{d}; 2)$ as well as on the incorporation of xT_{d} and/or xA_{d} , into self-complementary oligo(2'-deoxynucleotides). These modified DNA fragments are studied with respect to their structural and biological characteristics. Moreover, a straightforward synthesis of 2'-deoxy- β -p-xyloinosine (xI_d; 3) is described.

Results and Discussion. - *Building Blocks Derived from* **2** *and Incorporation into Oligonucleotides.* The 2'-deoxy- β -D-xyloadenosine (xA_d; 2) was synthesized starting from adenosine *via* an **0-2',3'-dibutylstannylene** derivative according to *Moffat* and coworkers [4] which gave regioselectively 2'-0 -tosyladenosine. In large-scale experiments, inorganic salt was removed by precipitation with acetone, the mother liquor evaporated, and the tosylate extracted with acetone. Pure 2'-0 -tosyladenosine was obtained after additional chromatography (silica gel, AcOEt/acetone/EtOH 5 : 1 : 1) and converted into **2** in a 1,2-H-shift reaction according to *Hansske* and *Robins [5].* A MeOH/H,O gradient *(5-20 Yo)* was used during ion-exchange purification.

In contrast to dA **(l),** compound **2** exhibits preferred N-type sugar puckering (84%) which can be deduced from *i)* ${}^{3}J(H-C(1'),H_{g}-C(2'))$ (2.7 Hz) applying pseudorotational analysis [6-8] and *ii*) from 1D ¹H-NOE difference spectroscopy [9]: saturation of $H-C(1')$ results in NOE's at $H_a-C(2')$ (6.7%) and $H-C(4')$ (3.0%), but none at H-C(3'), although both protons are positioned on the α -face of the glyconic moiety. This can only be interpreted by a pronounced population of $\frac{3}{T_2}$ conformers.

	C(2)	C(4)	C(5)	C(6)	C(8)	C(1')	C(2')	C(3')	C(4')	C(5')
$A(2'-tos)$	151.9	147.9	119.6	156.1	139.9	87.4	84.9	79.0	69.9	61.6
$\mathbf{2}$	148.6	152.3	119.0	156.2	140.1	82.5	40.3	69.3	85.3	60.0
3	146.4	147.9	124.0	157.5	139.0	82.6	41.1	69.1	85.6	59.9
5а	150.1^{b}	151.8 ^b	125.5	150.1 ^b	143.3	82.6	40.8	68.9	85.6	59.8
b	$150.3b$)	151.9 ^b	125.7	151.5^{b}	143.1	83.3	40.5	69.4	84.2	63.3
$\mathbf c$	150.1 ^b	152.1 ^b	125.4	151.5^{b}	142.9	82.7	40.5	71.5°	$83.2d$)	62.8
6b	$150.8b$)	$151.6b$)	125.3	159.1	141.5	82.8	40.4	69.4	83.6	63.1
c	151.5^{b}	152.1 ^b	125.2	159.2	141.2	82.3	40.6	71.7	83.1	62.9

Table 1. *I3C-NMR Chemical Shifts of Nucleoside Derivativesa)*

Measured in (D_6) DMSO at 296 K; resonances of protecting groups are not given.

") ^b) Tentative assignment.
^c) ²*J*(**P**,**C**(3')) = 3.3 Hz.

^c) ${}^{2}J(P,C(3')) = 3.3$ Hz.
^d) ${}^{3}J(P,C(4')) = 5.7$ Hz.

 ${}^{3}J(P, C(4')) = 5.7$ Hz.

Protection of 2 at its 6-NH₂ group with a benzoyl residue was performed on a conventional route [10] and yielded $5a$ (bz⁶xA_d). As all new compounds, $5a$ was characterized by 'H- and I3C-NMR spectra *(Table 1* and Exper. *Part)* as well as by elemental analyses. Quantitative TLC scanning (silica gel, AcOEt/acetone/EtOH/H,O $18:3:2:2$) revealed that the benzoyl group of 5a could be split off by 25% aq. ammonia to about one half (r.t.) within 2 h; after 20 h, deprotection was complete. Regular bz^6A , proved slightly more stable.

As an alternative, we introduced a (dimethylamino)methylidene residue into $2 (\rightarrow 6a)$ which needs no intermediary protection of the glycose OH groups and which is known to stabilize an N-glycosylic bond [l 11. Indeed, compound **6a** is stable in 80 % AcOH/H,O at room temperature for more than 2 h (TLC monitoring).

Subsequent 5'-dimethoxytritylation of **5a** and **6a** yielded **5b** and **6b,** respectively, which were then reacted with PCl_3/N -methylmorpholine/1,2,4-triazole to give the 3'phosphonates **5c** and **6c,** respectively, as triethylammonium salts, after flash chromatography and extraction with aqueous $(Et₁NH)HCO₃$ solution [12]. Both compounds were characterized by NMR spectroscopy and elemental analyses. Epimerization at C(3') of **1** in combination with a change of the preferred sugar puckering brings $OH-C(3')$ into close contact to the nucleobase, as the 'axial-down' orientation of the $OH-C(3')$ group is changed into 'axial-up'. This results in characteristic upfield shifts of the "P-NMR resonance of $3'$, $4'$ - D -threo-configurated **5c** and **6c** compared to regular $3'$, $4'$ - D -erythroconfigurated phosphonates $(\Delta \delta = 0.2{\text -}0.3 \text{ ppm})$.

Alternatively, compound **6b** was reacted with **chloro(2-cyanoethoxy)(N,N-diiso**propy1amino)phosphane to give the phosphoramidite **6d** [131. Both diastereoisomers revealed sufficiently different chromatographic mobilities and could be partially separated. The faster migrating compound was then correlated with the upfield ³¹P-NMR signal (146.7 ppm) and the slower migrating one with the downfield resonance (151.4 ppm).

Succinylation of **6b** in the presence of 4-(dimethylamino)pyridine gave acid **7a** which was subsequently activated as its 4-nitrophenyl-ester **7b** and then coupled to amino-functionalized controlled-pore glass $(\rightarrow 7c)$ [14]. The nucleoside concentration in 7c was determined to be 27 μ mol of $2/g$ of *Fractosil*.

HELVETICA CHIMICA ACTA – Vol. 74 (1991) 2057

$$
d(xA)_{12}-A
$$
\n
$$
d(A_{12})
$$
\n
$$
d(xT)_{12}-T
$$
\n
$$
d(T_{12})
$$
\n
$$
d
$$

16

The DNA building blocks 5c and 6c as well as that derived from xT_d (4) were then used together with those of regular 2'-deoxynucleosides for the synthesis of the modified oligonucleotides **8, 10,** and **13-16.** The protocol of phosphonate chemistry including detritylation, activation (adamantanoyl chloride), coupling, and capping followed a protocol described recently [12]. Oxidation with I_2 in pyridine/H₂O/THF was carried out on the oligomeric level. In case of the most critical oligonucleotide **(8),** the yield of each coupling step was measured quantitatively (95-98 %) by monitoring the liberation of the (MeO)₂Tr cation spectrophotometrically (λ_{max} 498 nm; ε 70000) according to [15]. The oligonucleotides were removed from the support according to [131 and then purified as 5^\prime -(MeO), Tr derivatives by reversed-phase HPLC. The detritylated compounds (80%) AcOH/H,O, followed by neutralization with $Et₁N$) were again submitted to reversedphase **HPLC,** desalted, and lyophilized.

Properties of *Oligo (2'-deoxy-xylonucleotides). Fig. la* displays the CD spectra of $d[(xA)₁₂ - A]$ **(8)**, $d(A₁₂)$ **(9)**, as well as those of the corresponding nucleosides **1**, **2** in 1_M NaCl. While $d(A_{12})$, which is known to form a right-handed single helix [16], exhibits a broad B_{2u} transition at 275 nm with a positive and a B_{1u} transition at 249 nm with a negative sign, the corresponding $\pi-\pi$ ^{*} transitions of 8 show reversed *Cotton* effects together with a hypsochromic shift (3–4 nm) of the B_{1u} band. These results are similar to those obtained for $d[(xT)_{12} - T]$ (10) and $d(T_{12})$ (11) [3].

Fig. 1. a) *CD Spectra of d[(xA)₁₂-A]* (8) *and d(A₁₂)* (9; left-hand scale) *and of A_d*(1) *and xA_d*(2; right-hand scale; oligomer conc., 1.1 pM; monomer conc., **25.9** pM; measured in 60 mM cacodykdte buffer **(pH** 7.0, 1~ NaC1, 100 mM MgCl₂), at 8°) *and b) normalized melting profile of* $d[(xA)_{12}A]$ *(8; conc., 1.3* μ *m; buffer, see <i>Fig. 1*)

Interestingly, $d[(xA)_{12}-A](8)$ exhibits no temperature-dependent *UV* absorbance at its λ_{max} value (258 nm) between 5 and 50° as it would be typical for a single-stranded oligonucleotide that does not self-aggregate. Above **50",** a slight and linear increase can be observed *(Fig. Ib)* with a hypochromicity *(h)* of *ca.* 9% *(SCrSS"),* a value which is similar to that of $d(A_{12})$ (h = 13%; 60 mm cacodylate buffer, pH 7, 100 mm MgCl₂, 1m NaCl) [3]. The expriment was repeated three times with the same sample resulting in identical melting profiles. This behaviour is almost identical to the absorbance thermal denaturation profiles of telomeric oligo(2'-deoxynucleotides) like $d(T,\mathbb{G}_4)$ (corresponding to four repeats of the *Tetrahymena* G-strand sequence) and implies a significant tendency to self-association by forming purine-purine base pairs [171. Purine-purine, in particular adenine-adenine base pairing under neutral conditions was also already proven for $d(C, T_aC_1)$. $2[d(G, A_aG_1)]$ triple helices [18] as well as for 2',3'-dideoxy-p-glucopyranose oligonucleotides [19]. At the present state, we have no clear conception for the secondary structure of $d[(xA)_{12}A](8)$, except that it is quite rigid. The base pairing may either occur between both 6-NH₂ groups and both N(1) atoms of the adenine residues or between $6-NH₂$ (Ade-1) and N(7) (Ade-2) as well as $6-NH₂$ (Ade-2) and N(1) (Ade-1). Also in the latter *(Hoogsteen* -like) base pairing, anti-conformation at the N-glycosylic bonds of both nucleotide units is conceivable.

Fig. 2. a) *Normalized melting profile of* $d[(xA)_{12}-A\cdot d[(xT)_{12}-T]$ *(8.10; oligomer conc., 0.8* μ *m of double strand;* buffer, see Fig. 1) and b) *CD spectra of d(A₁₂)* \cdot *d(T₁₂)* (9 \cdot 11; left-hand scale) *and d[(xA)₁₂-A]* \cdot *d[(xT)₁₂-T]* (8 \cdot 10, right-hand scale; oligomer conc., 2 μ M of single strands, each; at 15°; buffer, see *Fig. 1*)

Mixing of $d[(xA)_1 - A]$ **(8)** with an equimolar amount of $d[(xT)_1 - T]$ **(10)** results in the formation of a duplex (of still unknown polarity) which exhibits cooperative melting *(Fig. 2a:* **8** · **10**, T_m 36°; **9** · **11**, T_m 43° [3]). The T_m value (36°) of **8** · **10** is identical with that of the 1:1 complex $d[(xT)_{12}T] \cdot d(A_{12})$ (9.10) [3]. The CD spectrum of 8.10 shows the characteristics of a Z-DNA *(Fig. 2b)* [20].

Both $\pi-\pi$ ^{*} transitions (B_{1u}, B_{2u}) of **8.10** were measured as a function of temperature between 5 and 85° (Fig. 3). The $|\theta|^{B_{2u}}$ *vs.* θ curve exhibits a maximum at the melting temperature (36°) which coincides with the reversal point of the $|\theta|^{B_{1u}}$ *us.* θ plot indicating complex formation. The transition of a maximum of the $|\theta|^{B_{2u}}$ *vs.* θ curve can be due to the fact that $d[(xA)₁₀ - A]$ (8), formed by melting of the duplex $8 \cdot 10$, forms a self-aggregate

Fig. 3. Temperature-dependent ellipticities θ , of the B_{lu} and B_{2u} transition of $d[(xA)_{12}A] \cdot d[(xT)_{12}T]$ **(8.10; oligomer conc., 2.2 μm of single strands, buffer, see** *Fig. 1***)**

which is obviously more stacked than the latter. Only above **50°,** a continuous decrease of the CD of **8.10** with temperature can be observed.

In contrast to these results, mixing of equimolar amounts of $d[(xA)_{12}-A](8)$ and $d(T_{12})$ **(1 1)** does obviously not result in complex formation. Temperature-dependent **UV** measurements display the same curve train than in the case of **8** (see above). Moreover, temperature-dependent CD measurements do not show any reversal point, neither of the B_{1u} nor the B_{2u} transition (data not shown).

Due to the configurational change at $C(3')$ of 2'-deoxy- β -D-xylonucleosides, oligonucleotides buildup from such monomeric units should be almost rigid, in particular with respect to the conformation at the N-glycosylic bond. Therefore, mixing of $d[(xT)_{12} - T]$ **(10)** with d(A,,) **(9)** leads probably to a structural adaptation of the flexible **9** to the more rigid **10,** yielding a complex which shows the general CD spectroscopic characteristics of the **oligo(2'-deoxy-xylonucleotide)** *(Table* 2) [3]. On the other hand, mixing of the structurally rigid, self-associated $d[(xA)_{12}A]$ **(8)** with right-handed $d(T_{12})$ [21] **(11)** does not result in complex formation which would obviously be energetically unfavorable for such relatively short DNA fragments.

	$d(T_1, 1)$ (11)	$d[(xT)12 - T]$ (10)	
$d(A_{12}) (9)$	$+ (43°)$	$+ (36^{\circ})$	
$d[(xA_{12}-A)]$ (8)	-	$+ (36^{\circ})$	

Table 2. *Duplex Formation of Oligo (Z'-deoxyrihonucleotides) and Oligo (7-deoxyxylonucleotides)*

In addition to 'homo' **oligo(2'-deoxy-xylonucleotides)** such as **8** and **10,** we synthesized 'mixed' oligo(2'-deoxynucleotides) containing both, $2'$ -deoxy- β -p-ribonucleosides and the unnatural diastereoisomers xA_a and/or xT_a . Such DNA fragments are particularly attractive as antisense oligonucleotides because they may be resistant to enzymatic transformations. It is not evident, however, that these 'mixed' oligo(2'-deoxynucleotides) will form stable duplexes *per* se so that we focussed our interest mainly on the structural elucidation of **DNA** fragments containing 2'-deoxy-xylonucleosides either at the termini or in their innermost part. For these investigations, we chose the self-complementary dodecamer **d(G-T-A-G-A-A-T-T-C-T-A-C) (12)** as parent sequence which was already intensively studied [22]. We substituted either the innermost of the outer T_d 's and/or A_d 's by their 3',4'-D-threo-configurated counterparts yielding the oligomers 13–16.

All oligonucleotides **1516** display single-phasic cooperative melting profiles (temperature-dependent **UV** measurements at 260 nm; data not shown) in 60 mM cacodylate buffer (pH 7, 100 mm MgCl₂, 1_M NaCl), at an oligomer ($=$ single strand) concentration of *ca.* 3 **WM.** As *Table 3* shows, replacement of regular 2'-deoxynucleotides by their 3',4'-D-

Oligomer	T_m [^o C]	$h[\%]$
$d(G-T-A-G-A-A-T-T-C-T-A-C)$ (12)	46	30
$d(G-T-A-G-xA-xA-T-T-C-T-A-C)$ (13)	40	23
$d(G-T-A-G-xA-xA-xT-xT-C-T-A-C)$ (14)	36	14
$d(G-T-A-G-A-A-XT-XT-C-T-A-C)$ [3] (15)	35	14
$d(G-xT-xA-G-A-A-T-T-C-xT-xA-C)$ (16)	29	20

Table 3. *Melting Temperatures* (T_m) and Thermal Hypochromicities $(h; 5-85^{\circ})$ *of Oliao(2'-deoxvribonucleotides)* **12-16a)**

^a) Oligomer (= single strand) concentration, 3μ , measured in 60 mm Na cacodylate buffer, **pH** 7.0, 100 mm MgCI,, and **IM** NaCl at 260 nm; for further conditions, **see** [3].

threo -configurated counterparts results generally in a significant decrease of the corresponding melting temperatures whereby replacements at the 5'- and 3'-termini causes the most dramatic effect $(\Delta T_m = 17^{\circ})$.

From the concentration dependence of T_m values of an oligonucleotide, conclusions can be drawn on the molecularity of the melting process as well as on its thermodynamic parameters. Therefore, we measured the thermal denaturation profiles of **12-14** and **16** as a function of oligomer concentration within the range $0.5-15 \mu \text{m}$ (Fig. 4a). As Fig. 4a

Fig. 4. a) T_m^{-1} vs. log c Plot of the oligomers $d(G-XT-XA-G-A-A-T-T-C-XT-XA-C)$ (16; \bullet), $d(G-T-A-G-XA-XA-XT-T-C)$ *xT-C-T-A-C)* **(14** *), *d(G-T-A-G-xA-xA-T-T-C-T-A-C)* **(13;** *0), and d(G-T-A-G-A-A-T-T-C-T-A-C)* **(12;** *0;* buffer, **see** *Fig. I) and* b) *change of transmission* (=amplitude) [mV] *of d(G-T-A-G-xA-xA-xT-xT-C-T-A-C)* **(14;** oligomer conc., 14 μ M) *as a function of temperature, after a T-jump of 5.8°* (buffer, see *Fig. I*)

shows, three of these four 'mixed' oligo(2'-deoxynucleotides), the parent oligomer **12** as well as those bearing 2'-deoxyxylonucleotides in the inner part **(13,14),** exhibit discontinuous T_m^{-1} *vs.* log *c* plots, while the T_m of compound 16 is continuously concentration-dependent. From the T_m^{-1} *vs.* log *c* plot, ΔH and ΔS of the melting process can be determined according to *Borer et al.* [23]. The *AH* value of -90 kcal/mol for the parent **12** is in good agreement with a calculated value of -95 kcal/mol using published increments [24]. A rough value of the contribution of a dG-dC base pair to the total interaction energy for each possible nearest neighbor is -14 kcal. The corresponding contribution of $dA-dT$ is -6 kcal [24]. As it is assumed that the nucleation process is associated with a $AH = 0$ (H-bonding, the only major interaction in nucleation, has negligible enthalpy in **H,O** [25]), the sum of ΔH increments of the dodecamer **12** (-104 kcal/mol) has to be corrected by a weighted value regarding the $dG-dC$ and $dA-dT$ content. Below 2.8 μ M, the concentration dependence of the T_m value of 12 becomes much less significant. These results indicate that in the high-concentration range ($c \ge 2.8 \mu$ M), melting of a duplex into two random coils are predominantly observed by temperature-dependent *UV* measurements, while in the low-concentration range ($c \le 2.8 \mu$), a hairpin-coil transition is observed [221.

An analogous result is observed with **14,** derived by replacement of the innermost dA 's and dT 's of 12 by the corresponding 2'-deoxy- β -D-xylonucleosides: 14 exhibits a discontinuous T_m^{-1} *vs.* log *c* plot *(Fig.4a).* While in the low-concentration range $(c \le 2.5$ μ m), T_m is strictly independent from the oligonucleotide concentration, in the high-concentration range ($c \ge 2.5 \mu m$), a strong dependence can be observed. The melting enthalpy is found to be -61 kcal/mol. This value is only in satisfactory agreement with a calculated value (-70 kcal/mol) if an internal loop of the inner modified tetramer $[d(xA-xA-xT-xT)]$ within 14 is assumed. Concentration-independent T_m values below 2.5 μ _M indicate preferred hairpin melting.

The result that two different structural species, *i.e.* duplex and hairpin, are simultaneously present in a solution of **14** was confirmed by temperature-dependent T-jump experiments [26] $(AT = 5.8^{\circ}; 14 \mu\text{m of single strand})$ which clearly indicate two correlated relaxation processes within the temperature range $(T_m - 15^{\circ}) \le T_m \le (T_m + 10^{\circ})$. The transmission-time curves after a T -jump can at best be least-squares fitted [27] with two time constants which differ by 1-2 orders of magnitude *(Table 4)*. The relaxation time (τ) of the fast process is typical for a hairpin/single strand equilibrium [28], while τ of the slower process corresponds to a bimolecular reaction. Moreover, a plot of the change of transmission (= amplitude) *us.* temperature *(Fig. 4b)* displays a differential melting profile of the oligomer from which a T_m value of 40° can be taken. This value is identical with that obtained from temperature-dependent A_{260} measurements at the same oligomer concentration.

Process	τ^{-1} [s ⁻¹]			
	320K	311 K ($\approx T_m$)	297 K	
Bimolecular	750	230	200	
Monomolecular	14800	5300	2300	

Table 4. *Reciprocal Relaxation Times* (τ^{-1}) *of the Oligomer* **14^a**) *after a T-Jump of 5.8°*

Interestingly, oligonucleotide **13** bearing only two xA,'s tends more to hairpin formation even at higher concentrations compared to 14. A smooth inflection point of the $T_m⁻¹$ *us.* logc plot (Fig. 4a) in case of 13 is around 5.6 μ M which means that the substitution of two dA 's by xA _d destabilizes the duplex 12 more than substitution of the four inner 2'-deoxynucleosides by their 3',4'-D-threo-configurated counterparts. It is conceivable that the two xA, residues within **13** bend the backbone of the single-stranded oligomer into a loop which facilitates hairpin formation and which might be energetically more favorable than a duplex in which two $d(xA-xA)$ units are positioned opposite to $d(T-T)$; such a complex formation was already excluded (see above).

If, on the other hand, the 3'- and 5'-flanks of **12** are destabilized by the introduction of $2'$ -deoxy- β -D-xylonucleosides like in oligomer 16, hairpin formation is completely abolished down to an oligomer concentration of ca. 0.4 μ m. From the T_{m}^{-1} *us.* logc plot *(Fig. 4a)*, a ΔH value of -55 kcal/mol can be determined which is in agreement with a calculated value (-52 kcal/mol) for the regular, inner hexamer d(G-A-A-T-T-C). Table **5** summarizes the thermodynamic parameters of oligomer melting.

Oligomer	AH [kcal/mol]	ΔS [cal/K · mol]	ΔG [kcal/mol]			
			298 K	310 K	315 K	
9	-90	-257	-13.4	-10.3	-9.0	
12	-61	-172	-9.7	-7.7	-6.8	
11	-197	-605	-16.7	-9.4	-6.4	
13	-55	-157	-8.2	-6.3	-5.5	
a ₁	Measured in 60 mm cacodylate buffer, pH 7.0, 1m NaCl, 100 mm MgCl ₂ .					

Table 5. *Thermodynamic Parameters of Oligonucleotide Meltinga)*

Fig. 5a-c display temperature-dependent ellipticities of the oligonucleotides **14, 13,** and 16 in a medium-concentration range $(2.3-2.9 \,\mu\text{m})$. For compounds 13 and 14, both duplex and hairpin structures should be present at this concentration, while **16** shows only duplex formation.

In general, all $|\theta|$ *vs.* θ plots reflect the melting of the oligonucleotides. However, whole in the case of oligomer 16, the reversal points of the $|\theta|^{B_{1u}}$ *us.* θ and the $|\theta|^{B_{2u}}$ *us.* δ plot are almost identical *(ca.* 36"), the reversal points of corresponding plots for **13** and **14** differ significantly. In both cases, the mean value of both T_m ' values taken from the temperature-dependent CD values is almost identical with the T_m determined from temperature-dependent **UV** measurements at the corresponding oligomer concentration. These results imply that melting of the simultaneously present hairpin and duplex structures can be observed by measuring the temperature dependence of both $\pi-\pi$ ^{*} transitions.

In the following, we tested the enzymatic hydrolysis of the oligonucleotides **14** and **16** by either snake-venom phosphodiesterase **(oligonucleotide-5'-nucleotidohydrolase)** followed by alkaline phosphatase as well as by calf-spleen phosphodiesterase (oligonucleotide-3'-nucleotidohydrolase) and alkaline phosphatase. *Fig.* 6a shows two typical HPLC pattern of the enzymatic tandem hydrolysis (snake-venom PDE) of **14** after a reaction time of 2.5 and 16 h. As can be seen, after 16 h, the dA peak is smaller than that of xA_d due

Fig. 5. Temperature-dependent ellipticities $|\theta|$ of the B_{l_0} and B_{2u} transition of a) $d(G-T-A-G-XA-XA-XT-XT-C-T-A-tB)$ C) (14; oligomer conc., 2.0 μ M of single strand), b) $d(G-T-A-G-XA-XA-T-C-T-A-C)$ (13; oligomer conc., 2.5 μ M of single strand), and c) $d(G-xT-xA-G-A-A-T-T-C-xT-xA-C)$ (16; oligomer conc., 2.3 μ m of single strand; buffer, **see** *Fig. 1)*

to a partial deamination of dA to dI by minute impurities of adenosine deaminase. The 2'-deoxy- β -D-xyloadenosine (xA_d; 2) is obviously significantly more resistant towards enzymatic deamination than dA **(1).** In order to confirm this finding, we measured the *Michaelis-Menten constants of the adenosine-deaminase-catalyzed reaction of 2 (* K_m *, 238)* μ M; V_{max} , 28.2 mM·min⁻¹·mg⁻¹ [29]) and compared them with those of the deamination of the regular substrate 1 (K_m , 32 μ M; V_{max} , 200 mM·min⁻¹·mg⁻¹). These substrate properties opened the possibility of the synthesis of XI, **(3)** on a preparative scale (see *Exper. Part).* Interestingly, dA and xA_a (*Fig. 6a*) as well as dI and xI_a (dI, t_R 8.4 min; xI_a , t_R 7.1 min; solvent system III) are well separated by $RP-18$ HPLC, while dT and xT_d are not.

As *Fig. 6b* shows, the snake-venom phosphodiesterase hydrolysis of **14** follows a discontinuous two-step reaction: obviously in the first step, the unmodified 3'-flanks are hydrolyzed with a $\tau/2$ of 0.4 min which is almost identical with the half-life value of the completely unmodified oligomer **12** [3]. In the second step, the inner tetramer is hydrolyzed with a significantly slower rate $(\tau/2 = 73 \text{ min}, h = 14\%)$. Calf-spleen phosphodiesterase hydrolyzes **14** only marginally. Even after 18 h (37"), the oligomer was still present in the enzymatic cleavage mixture (data not shown).

Fig. 7a displays the HPLC pattern of the enzymatic tandem hydrolysis (snake-venom phosphodiesterase + alkaline phosphatase; 16 h, 37") of oligomer **16.** As can be seen from *Fig. 7b,* **16** is hydrolyzed in a continuous way by snake-venom phosphodiesterase with a $\tau/2$ value of 6.6 min. This is *ca.* 13 times slower than the hydrolysis of the corresponding unmodified **12.** Calf-spleen phosphodiesterase hydrolyzes the oligomer **16** only very

Fig. *6.* a) *HPLC Profiles after enzymatic tandem hydrolysis in 0.1* M Tris-HCl (pH 8.3) *ojd(G-T-A-G-xA-xA-xT-xT-C-T-A-C)* **(14)** *with snake-venom phosphodiesterase followed by alkaline phosphatase, after a total incubation time of 2.5 h* (37"; left) *and after a total incubation time of 16 h* (37"; right; conditions, see **[3])** *and* b) *time course of phosphodiester hydrol-vsis in 0.1* **M** Tris-HCl **(pH** 8.3) *ofd(G-T-A-G-xA-xA-xT-xT-C-T-A-C)* **(14)** *by either snakevenom phosphodiesterase or calf-spleen phosphodiesterase* (23°; conditions, see [3]; 2.5 μ M of single strands, each)

Fig. 7. a) HPLC Profile after enzymatic tandem hydrolysis in 0.1 M Tris-HCl (pH 8.3) of $d/G-xT-xA-G-A-A-T-T-C-T$ *xT-xA-C)* **(16)** *with snake-venom phosphodiesterasefollowed by alkaline phosphatase, after a total incubation time of 16 h* (3T; conditions, see [3]) *and* b) *time course of phosphodiester hydrolysis in* 0.1~ Tris-HCl **(PH** 8.3) *of d(G-xT-xA-G-A-A-T-T-C-nT-xA-C)* **(16)** *with either snake-venom phosphodiesterase or calf-spleen phosphodi* $esterase (23^o; conditions, see [3]; 3.3 μ m of single strand)$

slowly: after 2 h, the hypochromicity increase is determined to 3% . For comparison, unmodified 9 is hydrolyzed with a $\tau/2$ of 2.7 min $(h = 27\%)$.

These results indicate that an oligomer bearing $2'$ -deoxy- β -D-xylonucleotides either in the center or at the **3'-** and 5'-flanks are significantly protected against the action of exonucleases, which opens a new way for a prolongation of the intracellular lifetime of antisense oligonucleotides in virus-infected cells. Moreover, oligo(2'-deoxy- β -p-xylonucleotides) are interesting as potential alternative nucleic acids which may have been discarded by nature during evolution [19].

2064

We thank for the help and advice by Dr. D. Pörschke, Max-Planck-Institut für Biophysikalische Chemie, Göttingen, with the measurements of T-jump experiments as well as excellent technical assistance by Miss *I*. Strodtholz. Financial support by the Deutsche Forschungsgemeinschaft is gratefully acknowledged.

Experimental Part

General. **See** [30]. The phosphonates of regular 2'-deoxynucleosides were purchased from Sigma, St. Louis, and the Fractosil-linked 2'-deoxynucleosides from Milligene, Eschborn, Germany. Snake-venom phosphodiesterase (EC 3.1.15.1, *Crotallus* durissus), calf-spleen phosphodiesterase (EC 3.1.16.1), alkaline phosphatase (EC 3.1.3.1, *E. coli),* and adenosine deaminase (calf-intestine mucosa) are products of Boehringer, Mannheim, Germany. Oligonucleotide synthesis was carried out on an automated DNA synthesizer, model 380 B, of Applied Biosystems, Weiterstadt, Germany. CD Spectra: Jasco-600 spectropolarimeter, thermostatically controlled 1 -cm cuvettes connected with a Lauda *RCS* 6 bath. Microanalyses were performed by Mikroanalytisches Labor Beller, Göttingen, Germany.

9-(2'-Deoxy-B-~-threo-pentofuranosyl)adenine (= *2'-Deoxy-P-D-xyloadenosine;* **2)** was synthesized according to [5]. 'H-NMR ((D,)DMSO): 8.35 (s, H-C(8)); 8.15 **(s,** H-C(2)); 7.34 (br. s, NH,); 6.25 (dd, $J(H-C(1'),H_2-C(2')) = 2.2$, $J(H-C(1'),H_0-C(2')) = 8.7$, $H-C(1'))$; 5.97 (br. *s*, OH-C(3')); 4.69 (br. *s*, OH-C(5')); 4.33 (m, H-C(3')); 3.89 (m, H-C(4')); 3.67 (m, CH₂(5')); 2.78 (m, H_a-C(2')); 2.25 (dd, $J(H_\alpha-C(2'),H_\beta-C(2')) = -14.5$, $H_\beta-C(2')$.

9-(2'-Deoxy-~-~-threo-pentofuranosyl)hypoxanthine (= *2'-Deoxy-B-D-xyloinosine;* **3).** To a soh. of **2** (78 mg, 0.31 mmol) in H20 (3 ml), adenosine deaminase (EC 3.5.4.4, calf-intestine mucosa; 50 pg) was added. After stirring for 2 h at r.t., the mixture was evaporated to a small volume: $75 \text{ mg} (97%)$ of colorless crystals. M.p. 208-210°. UV (MeOH): 249 (10500). 'H-NMR ((D,)DMSO): 12.4 (hr., NH); 8.31 **(s.** H-C(8)); 8.07 **(s,** H-C(2)); 6.24 (dd, $J(H-C(1'),H₃-C(2')) = 8.8$, $J(H-C(1'),H₃-C(2')) = 1.6$, $H-C(1'))$; 5.45 (d, $J = 4.0$; OH-C(3')); 4.70 (m, OH-C(5')); 4.36 (m, J = 3.5, H-C(3')); 3.92 (m, H-C(4')); 3.71, 3.60 (2m, CH₂(5')); 2.76 (m, H_n-C(2')); 2.25 (d, $J(H_{\alpha}-C(2'),H_{\beta}-C(2')) = -15$, $H_{\beta}-C(2'))$. Anal. calc. for $C_{10}H_{12}N_4O_4$ (252.3): C 47.62, H 4.80, N 22.21; found: C 47.76, H 4.98, N 22.15.

9- [2' - Deoxy *-5'* -0- (4.4-dimethoxytrityl) **-B-D-** threo -pentofuranosyl]-N6- [*(dimethylamino)methylidene]* adenine **(6b).** A soh. of **2** (502 mg, 2 mmol) in DMF (10 ml) was stirred for 18 h with dimethylformamide diethyl acetal (1.7 ml, 10 mmol) at r.t. (6a: TLC (silica gel, CH₂Cl₂/acetone/Et₃N): R_f 0.1). After evaporation, the oily residue (0.8 g) was dissolved in pyridine (50 ml) and 4,4-dimethyltrityl chloride (760 mg, 2.24 mmol) and $(i-Pr)_2$ EtN (0.37 ml, 2.1 mmol) were added. After stirring for 3.5 h at r.t., pyridine was removed by repeated coevaporation with toluene (2 × 30 ml). The residue was submitted to FC (silica gel 60 *H*, column 6 × 10 cm, $CH_2Cl_2/acetone/Et_1N$ 20:10:1): **6b** (520 mg, 43%). Colorless foam. TLC (silica gel, $CH_2Cl_2/acetone/Et_1N$ 20:lO:l): **Rf** 0.48. 'H-NMR ((D,)DMSO): 8.93 **(s,** =CH-); 8.43 **(s,** H-C(8)); 8.34 **(s,** H-C(2)); 7.17--7.40 (m, (MeO)₂Tr); 6.75-6.84 (m, (MeO)₂Tr); 6.41 (m, H-C(1')); 5.75 (d, $J = 5.0$, OH-C(3')); 4.33 (m, H-C(3')); 4.20 (m, $H-C(4')$; *ca.* 3.7 (*m*, 2 Me, CH₂(5)); 3.20, 3.13 (2s, 2 MeO); 2.78 (*m*, $H₂-C(2')$); *ca.* 2.3 (*d*, $H₈-C(2')$). Anal. calc. for $C_{34}H_{36}N_6O_5$ (608.7): C 67.09, H 5.96, N 13.81; found: C 66.89, H 6.03, N 13.64.

9- [2'- Deoxy-S -0 - *(4,4* -dimethoxytrityl) *-B-* D - threo-pentofuranosyl] *-N6-[(dimethylamino)methylidene]* adenine 3'-(Triethylammonium Phosphonate) **(6c).** To a soln. of PCI, (360 **pl,** 4.1 mmol) and N-methylmorpholine $(4.5 \text{ ml}, 41 \text{ mmol})$ in CH₂Cl₂ (35 ml), 1,2,4-triazole $(0.94 \text{ g}, 13.6 \text{ mmol})$ was added and the mixture stirred for 30 min at r.t. After cooling to 0° , a soln. of 6b (480 mg, 0.79 mmol) in CH₂Cl₂ (10 ml) was added dropwise and the soln. stirred for 10 min at r.t. Thereupon, the mixture was poured into 1 M aq. (Et₃NH)HCO₃ (TBK, pH 8.0; 50 ml), shaken, and separated. The aq. layer was extracted twice with CH_2Cl_2 (30 ml), the combined org. extract dried (Na₂SO₄) and evaporated, and the colorless foam submitted to FC (silica gel 60 *H*, column 6 \times 10 cm, 600 ml of CH_2Cl_2/Et_3N 92:8, then $CH_2Cl_2/MeOH/Et_3N$ 88:10:2). The residue of the main zone was dissolved in CH_2Cl_2 (15 ml) and extracted twice with 1M aq. (Et₃NH)HCO₃ (pH 8, 20 ml). The org. layer was dried (Na₂SO₄) and evaporated: **6c** (390 mg, 64%). Colorless foam. TLC (silica gel, CH₂Cl₂/MeOH/Et₃N 88:10:2): *R_f* 0.65. ¹H-NMR ((D,)DMSo): 10.5 (br. s, NH); 8.95 **(s,** =CH-); 8.45 **(s,** H-C(8)); 8.41 **(s,** H-C(2)); 7.39-6.75 (m, (MeO),Tr); 6.79, 5.29 (P-H); 6.45 (m, H-C(1')); 4.79 (H-C(3')); 4.28 (m, H-C(4')); 3.71 (m, 2 Me, CH₂(5')); 3.20, 3.13 (2s, 2 MeO); 2.96 (m, CH₂); *ca.* 2.5 (m, CH₂(2')); 1.10 (t, Me). ³¹P-NMR ((D₆)DMSO): 1.25 (¹J(P₁H) = 584, $3J(P,H-C(3')) = 9.0$). Anal. calc. for C₄₀H₅₂N₇O₇P (773.9): C 62.08, H 6.77, N 12.67; found: C 62.12, H 6.90, N 12.46.

⁹- *[2'-* Droxy -5'-0- (4.4 -dimethoxytrityl) -8- **D-** threo -pentofuranosylJ- **N6-** [*(dimethylamino)methylidene]* adenine I?'-[(2-Cyanoethyl) *N,N-Diisopropylphosphorumidite]* **(6d).** To a soln. of **6b** (122 mg, **0.2** mmol) in dry THF (1.5 ml) , $(i\text{-}Pr)$, EtN $(110 \mu l, 0.63 \text{ mmol})$ was added. Subsequently, chloro(2-cyanoethoxy) (N,N-diisopropylamino)phosphane (50 μ , 0.22 mmol) was added within 2 min at r.t. under N₂. After stirring for 30 min, the reaction was quenched by adding 5% aq. Na₂CO₃ soln. (4 ml). The mixture was extracted with CH₂Cl₂ (2 x 5 ml) and the org. layer dried (Na₂SO₄) and evaporated. FC (silica gel 60 *H*, column 3×6 cm, CH₂Cl₂/AcOEt/Et₃N 45:45:10) gave two partially overlapping zones of diastereoisomers **6d** (156 mg, 96%). Colorless oil. TLC (silica gel, column 3×6 cm, CH₂Cl₂/AcOEt/Et₃N 45:45:10): R_f 0.50, 0.53. ³¹P-NMR ((D₆)DMSO): 151.4 (slower migrating zone), 146.7 (faster migrating zone).

N⁶-Benzoyl-9-(2'-deoxy-β-D-threo-pentofuranosyl)adenine (5a). To a soln. of **2** (100 mg, 0.40 mmol) in dry pyridine (10 ml), trimethylchlorosilane (0.25 ml, 2 mmol) was added. After stirring for 15 min at r.t., benzoyl chloride (0.23 ml, 2 mmol) was added and stirring continued for 2 h. The mixture was cooled to 0° and H₂O (0.5 ml) added, followed, after 5 min, by 25% aq. NH, soln. After 30 min, pyridine was removed by evaporation and the residue dissolved in H,O and extracted with AcOEt (10 ml). The org. layer was evaporated, pyridine (3 ml) and 25% aq. NH, soln. were added, and after stirring for 1 h at r.t., the mixture was evaporated. FC (silica gel 60 *H,* column 6×6 cm, AcOEt/acetone/EtOH/H₂O 18:3:2:2) gave 5a (85 mg, 60%). Colorless crystals. M.p. 175-177^o (2-PrOH). TLC (silica gel, AcOEt/acetone/EtOH/H₂O 18:3:2:2): R_f 0.4. ¹H-NMR ((D₆)DMSO): 11.2 (br., NH); 8.77 **(s,** H-C(8)); 8.70 **(s,** H-C(2)); 8.05, 7.60 *(2m,* 5 arom. H); 6.47 *(d,* H-C(1')); 5.55 *(d,* OH-C(3')); 4.73 *(t,* OH-C(5')); 4.42 *(m, H-C(3'))*; 4.00 *(m, H-C(4'))*; 3.74 *(m, CH*₂(5')); 2.83 *(m, H_a-C(2')*); 2.38 *(m, H_g-C(2')*). Anal. calc. for $C_{17}H_{17}N_5O_4$ (355.4): C 57.46, H 4.82, N 19.71; found: C 57.36, H 4.95, N 19.64.

 N^6 -Benzoyl-9-[2'-deoxy-5'-O-(4,4'-dimethoxytrityl)- β -D-threo-pentofuranosyl]adenine (5b). Compound 5a (280 mg, 0.79 mmol) was dried by repeated coevaporation with pyridine (30 ml). The residue was dissolved in pyridine (15 ml) and 4,4'-dimethoxytrityl chloride (315 mg, 0.93 mmol) and (i-Pr)₂EtN (0.14 ml, 0.85 mmol) were added. After stirring for 3 hat r.t., pyridine was removed by repeated coevaporation with toluene *(SO* ml). FC (silica gel 60 *H*, column 6 × 6 cm, CH₂Cl₂/acetone 12:5) yielded 5b as colorless foam (428 mg, 82%). TLC (CH₂Cl₂/acetone 12:5): R_f 0.47. ¹H-NMR ((D₆)DMSO): 11.2 (br., NH); 8.77 (s, H-C(8)); 8.49 (s, H-C(2)); 8.07–6.77 *(m,* C,H,CO, (MeO),Tr); 6.53 *(d,* H-C(1')); 5.51 *(d,* OH-C(3')); 4.37 *(m.* H-C(3')); 4.28 *(m,* H-C(4)); 3.72 *(m,* 2 MeO, CH₂(5')); 2.79 *(m, H_a*-C(2')); *ca.* 2.5 *(m, H_a*-C(2')). Anal. calc. for C₃₈H₃₅N₅O₆ (657.7): C 69.39, H 5.36, N 10.65; found: C 69.48, H 5.84, N 10.51.

3'- (Triethylammo-N6-Benzoyl-9- [*2'-deoxy-S- 0- (4,4'-dimethoxytrityI) -p-D-threo-pentofuranosyl]adenine nium Phosphonate) (Sc).* Compound **Sb** (200 mg, 0.3 mmol) was converted into **Sc** as described for **6c:** 158 mg (64%) colorless foam. TLC (silica gel, CH₂Cl₂/MeOH/Et₃N 88:5:2): R_f 0.3. ³¹P-NMR ((D₆)DMSO): 1.37 $({}^{1}J(P,H) = 594, {}^{3}J(P,H - C(3')) = 8.7$). Anal. calc. for C₄₄H₅₁N₆O₈P (822.9): C 64.22, H 6.25, N 10.21; found: C 64.47, H 6.48, N 10.16.

9-(2'-Deoxy-p- o-threo-pentofuranosyljadenine 3'- [3-(N- *'Fractosil'carbamoyl)propanoate]* **(7c).** To a soln. of **6b** (250 mg, 0.41 mmol) in pyridine (10 ml), **4-(dimethy1amino)pyridine** (60 mg, 0.49 mmol) and succinic anhydride (200 mg, 2 mmol) were added, and the soln. was stirred at 40 $^{\circ}$ for 72 h. After addition of H₂O (3 ml), the mixture was evaporated and dried by coevaporation with toluene (50 ml). The residue was dissolved in $CH₂Cl₂$ and extracted with 10% aq. citric acid (30 ml) and H₂O (30 ml). The org. layer was dried (Na₂SO₄) and evaporated: 278 mg (96%) ofcolorless material which was used without further purification. The succinate **7a** (142 mg, 0.20 mmol) was dissolved in a 5% soln. of pyridine in 1,4-dioxane (1.25 ml). After addition of 4-nitrophenol (50 mg, 0.36 mmol) and dicyclohexylcarbodiimide (80 mg, 0.40 mmol), the mixture was stirred for 3 h at r.t. After removal of dicyclohexylurea, DMF (1.25 ml) and *Fractosil 200* (450 µequiv. NH₂/g) were added. After addition of Et₃N (250) **pl),** the suspension was shaken for 4 h at r.t. Thereupon, Ac20 (75 **pl)** was added, and shaking was continued for another 30 min. The *Fractosil* derivative was filtered off, washed with DMF, EtOH, and Et,O, and dried *in uacuo.* The amount of silica-gel-bound nucleoside was determined by treatment of **7c** (5 mg) with 0.1M TsOH (10 ml) in MeCN. From the absorbance at 498 nm of the supernatant, 27 µmol of linked xA_d/g *Fractosil* was calculated (e $(MeO)_{2}Tr = 70000$.

Solid-Phase Synthesis of the Oligomers **S16.** As described in [3], with the 3'-phosphonates of $[(\text{MeO})_2\text{Tr}]\text{b}z^6\text{A}_d, \left[\text{(MeO)}_2\text{Tr}]\text{b}z^6\text{G}_d, \left[\text{(MeO)}_2\text{Tr}]\text{C}_d, \left[\text{(MeO)}_2\text{Tr}]\text{T}_d, \text{and } \left[\text{(MeO)}_2\text{Tr}]\text{C}_d\right.\right]$ and with 6c (neutralization with an equimolar amount of Et_3N , after removal of the $(MeO)_2$ Tr groups).

Enzymatic Hydrolysis of the Oligomers and Hypochromicity. As described in [3] (ε_{260} :A_d and xA_d, 15400; C_d, 7300; G_d, 11700; T_d and xT_d 8800).

Hypochromicity values (degradation of *ca.* 0.3 A_{260} units of oligonucleotide) and time courses of phosphodiester hydrolysis as described in [3].

HPLC Separation. See [3].

Melting Experiments. As described in [3] (linear temp. increase from 5 to 85°).

Determination of Michaelis-Menten <i>Constants. The kinetic constants of the enzymatic deamination of 2 were assayed at 25° in 1-cm quartz cuvettes. The mixture contained per ml of buffer (0.07*m Sorensen* phosphate buffer, pH 7.6), adenosine deaminase (from calf intestine, $0.5 \,\text{\upmu g/ml}$, and 2 as substrate in conc. between 0.15 and 0.67 μ m. Deamination was followed UV-spectrophotometrically at 260 nm. K_m and V_{max} were obtained from a double-reciprocal substrate/initial velocity plot (data not shown).

Temperature-Jump Experiments. T-Jump experiments were performed in 60 mM Na-cacodylate (pH 7.0, **IM** NaCl, 100 mm MgCl₂) on a thermostatted home-built apparatus at the Max-Planck-Institut für Biophysikalische Chemie, Gottingen. Measuring-cell dimensions: 7 x 7 **x** 8.4 mm. *Joule* heating was performed by discharge of a capacitor (10^{-8} F, 20 kV) which produced a T-jump of 5.8° within a temp.-range of 20.2–47°. The exper. data were transferred to the *Gesellschaft für wissenschaftliche Datenverarbeitung mbH*, Göttingen, for analysis of the relaxation curves. Time constants were evaluated by a fitting procedure designed by *Prouencher* [27].

REFERENCES

- [l] M. J. Damha, P. A. Giannaris, P. Marfey, L. **S.** Reid, *Tetrahedron Lett.* 1991,32, 2573.
- [2] U. Asseline, J.-F. Hau, **S.** Czernecki, T. Le Diguarker, M.-C. Perlat, J.-M. Valery, N. Thanh Thuong, *Nucleic Acids Res.* 1991,19,4067.
- [3] H. Rosemeyer, F. Seela, *Helu. Chim. Acta* 1991, 74,748.
- [4] D. Wagner, J. P. H. Verheyden, J. *G.* Moffatt, *J. Org. Chem.* 1974,39, 24.
- [5] F. Hansske, M. J. Robins, *J. Am. Chem. SOC.* 1983, *105,* 6736.
- [6] C. Altona, M. Sundaralingam, *J. Am. Chem. SOC.* 1972,94,8205.
- [7] C. A. **G.** Haasnoot, F. A. A. M. de Leeuw, H. P. M. de Leeuw, C. Altona, *Org. Mugn. Reson.* 1981,15,43.
- [8] L. M. Koole, H. M. Buck, A. Nyilas, J. Chattopadhyaya, *Can. J. Chem.* 1987,65, 2089.
- [9] H. Rosemeyer, F. Seela, *Helu. Chim. Acta* 1989, 72, 1084.
- [lo] *G.S.* Ti, B.L. Gaffney, R.A. Jones, *J. Am. Chem. SOC.* 1982,104, 1316.
- [11] J. Zemlicka, A. Holy, *Collect. Czech. Chem. Commun.* **1967,** 32, 3159.
- [12] B. C. Froehler, P. **G.** Ng, M. D. Matteucci, *Nucleic Acids Res.* 1986,14, 5399.
- [I31 F. Seela, H. Driller, *Helv. Chim. Acta* 1988, 71, 1191.
- [14] F. Seela, H. Driller, *Nucleic Acids Res.* 1986, *14,* 2319.
- [I51 *Applied Biosystems,* 'Users Manual of the DNA Synthesizer' 380B, pp. 6-15ff.
- [16] C. **S.** M. Olsthoorn, L. J. Bostelaar, J.H. van Boom, C. Altona, *Eur. J. Biochem.* 1980,112,95.
- [I71 E. Henderson, **C.** C. Hardin, **S.** K. Walk, J. Tinoco, Jr., E. H. Blackburn, *CeN* 1987,51, 899.
- [I81 **D.S.** Pilch, C. Levenson, R.H. Shafer, *Biochemistry* 1991,30,6081.
- [19] A. Eschenmoser, *Nachr. Chem. Tech. Lab.* 1991,39,795.
- [20] W. Saenger, in 'Principles of Nucleic Acid Structure', Ed. C. **R.** Cantor, Springer Verlag, New York, 1984, p. 284.
- [21] W. Saenger, in 'Principles of Nucleic Acid Structure', Ed. **C.** R. Cantor, Springer Verlag, New York, 1984, p.310.
- [22] F. Seela, A. Kehne, *Biochemistry* 1987,26, 2232.
- [23] P. N. Borer, B. Dengler, 0. C. Uhlenbeck, I. Tinoco, Jr., *J. Mol. Bid.* 1974,86, 843.
- [24] V. **A.** Bloomfield, D. M. Crothers, **I.** Tinoco, **Jr.,** in 'Physical Chemistry of Nucleic Acids', Harper & Row, New York, 1974, pp. 72 **ff.**
- [25] C. R. Cantor, P. **R.** Schimmel, in 'Biophysical Chemistry', Part **111,** W. H. Freeman & Co., San Francisco, 1980, p. 1203.
- [26] a) D. Porschke, in 'Structural Molecular Biology', Eds. D. B. Davis, W. Saenger, and **S. S.** Danyluk, Plenum Publishing Corp., New York, 1982, pp. 333ff; b) D. Pörschke, in 'Molecular Biology, Biochemistry, and Biophysics', Eds. **I.** Pecht and R. Rigler, Springer Verlag, New York, 1977, Vol.24, pp. 191 ff.
- [27] *S.* W. Provencher, *Biophys. J.* 1976,16, 27.
- [28] C. R. Cantor, P. **R.** Schimmel, in 'Biophysical Chemistry', Part **111,** W. H. Freeman & Co., San Francisco, 1980, p. 1220.
- [29] **I.** A. Mikhailopulo, H. Wiedner, F. Cramer, *Riochem. Pharmakol.* 1981,30, 1001.
- [30] F. Seela, K. Kaiser, U. Bindig, *Helu. Chim. Acta* 1989, 72, 868.